3.871 \(\int \frac{1}{\cot ^{\frac{3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=194 \[ \frac{2 a}{d \left (a^2+b^2\right ) \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)}}-\frac{i \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac{i \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}} \]

[Out]

((-I)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]
])/((I*a - b)^(3/2)*d) - (I*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/((I*a + b)^(3/2)*d) + (2*a)/((a^2 + b^2)*d*Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x
]])

________________________________________________________________________________________

Rubi [A]  time = 0.508104, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {4241, 3567, 3616, 3615, 93, 203, 206} \[ \frac{2 a}{d \left (a^2+b^2\right ) \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)}}-\frac{i \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac{i \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

((-I)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]
])/((I*a - b)^(3/2)*d) - (I*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/((I*a + b)^(3/2)*d) + (2*a)/((a^2 + b^2)*d*Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x
]])

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3567

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[
1/((m + 1)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[a*c^2*(m + 1) + a*
d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d
^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[2*m]

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\cot ^{\frac{3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\tan ^{\frac{3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\\ &=\frac{2 a}{\left (a^2+b^2\right ) d \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)}}-\frac{\left (2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{a}{2}-\frac{1}{2} b \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=\frac{2 a}{\left (a^2+b^2\right ) d \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)}}-\frac{\left ((a-i b) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{1-i \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}-\frac{\left ((a+i b) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{1+i \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}\\ &=\frac{2 a}{\left (a^2+b^2\right ) d \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)}}-\frac{\left ((a-i b) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{(1+i x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}-\frac{\left ((a+i b) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{(1-i x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac{2 a}{\left (a^2+b^2\right ) d \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)}}-\frac{\left ((a-i b) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-(-i a+b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}-\frac{\left ((a+i b) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-(i a+b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac{i \tan ^{-1}\left (\frac{\sqrt{i a-b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{i a+b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{(i a+b)^{3/2} d}+\frac{2 a}{\left (a^2+b^2\right ) d \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.5633, size = 184, normalized size = 0.95 \[ \frac{\sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \left (\frac{2 a \sqrt{\tan (c+d x)}}{\left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}}-\frac{(-1)^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{-a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{(-a-i b)^{3/2}}+\frac{(-1)^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{(a-i b)^{3/2}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-(((-1)^(3/4)*ArcTanh[((-1)^(1/4)*Sqrt[-a - I*b]*Sqrt[Tan[c + d*x]])/S
qrt[a + b*Tan[c + d*x]]])/(-a - I*b)^(3/2)) + ((-1)^(3/4)*ArcTanh[((-1)^(1/4)*Sqrt[a - I*b]*Sqrt[Tan[c + d*x]]
)/Sqrt[a + b*Tan[c + d*x]]])/(a - I*b)^(3/2) + (2*a*Sqrt[Tan[c + d*x]])/((a^2 + b^2)*Sqrt[a + b*Tan[c + d*x]])
))/d

________________________________________________________________________________________

Maple [C]  time = 0.378, size = 4886, normalized size = 25.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x)

[Out]

-1/d*2^(1/2)/(a^2+b^2)/(I*a-(a^2+b^2)^(1/2)+b)/(I*a+(a^2+b^2)^(1/2)-b)*(3*I*EllipticPi((-(-(a^2+b^2)^(1/2)*sin
(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^
2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*(((a^2+b^2)^(1/2)*sin(d*x+c)+
b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+
c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(
a^2+b^2)^(1/2)*a*b+3*I*EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(
a^2+b^2)^(1/2)))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2
)^(1/2))^(1/2))*sin(d*x+c)*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d
*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x
+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*a-I*EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin
(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1
/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a^3*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x
+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)
*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)+I*Elliptic
Pi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),(-b+(a^2
+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a^3*
(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/
(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/
(-b+(a^2+b^2)^(1/2)))^(1/2)-3*I*EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x
+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))
/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/
sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*si
n(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(a^2+b^2)^(1/2)*a*b-3*I*EllipticPi((-(-(a^2+b^
2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),-(-b+(a^2+b^2)^(1/2))/
(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*b^2*(((a^2+b^2)^(
1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)
^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)
^(1/2)))^(1/2)*a+EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^
2)^(1/2)))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/
2))^(1/2))*sin(d*x+c)*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c)
)^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a
*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(a^2+b^2)^(1/2)-2*EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x
+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(
1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+
b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+
c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(
a^2+b^2)^(1/2)+2*EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^
2)^(1/2)))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/
2))^(1/2))*sin(d*x+c)*b^3*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c)
)^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a
*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)+EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a
*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)
*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(
d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+
b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(a^2+b^2)^(1/2)-2*El
lipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),(-
b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c
)*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+
c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d
*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(a^2+b^2)^(1/2)+2*EllipticPi((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*c
os(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*(
(-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*b^3*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*
x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^
2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)-2*EllipticF((-(-(a^2+b
^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),1/2*2^(1/2)*((-b+(a^2
+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/
(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^2)^(1/2)
*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(a^2+b^2)^(1/2)-4*EllipticF((-
(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),1/2*2^(1/2)*(
(-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*
x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+b^
2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*(a^2+b^2)^(1/2)+4*Elli
pticF((-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),1/2*2
^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+
a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(
-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)*b+4*EllipticF(
(-(-(a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2),1/2*2^(1/2)
*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*b^3*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(
d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(-(-(a^2+
b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/sin(d*x+c)/(-b+(a^2+b^2)^(1/2)))^(1/2)-2*(a^2+b^2)^(1/2)*co
s(d*x+c)*2^(1/2)*a*b+2*cos(d*x+c)*2^(1/2)*a^3+2*cos(d*x+c)*2^(1/2)*a*b^2+2*a*b*(a^2+b^2)^(1/2)*2^(1/2)-2*2^(1/
2)*a^3-2*2^(1/2)*a*b^2)*cos(d*x+c)^2*(1/cos(d*x+c)*(a*cos(d*x+c)+b*sin(d*x+c)))^(1/2)/(a*cos(d*x+c)+b*sin(d*x+
c))/(cos(d*x+c)-1)/(cos(d*x+c)/sin(d*x+c))^(3/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \cot \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \cot \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2)), x)